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Abstract—Driver identification must be studied because of
the development of telematics and Internet of Things applica-
tions. Many application services require an accurate account
of a driver’s identity; for example, usage-based insurance
may require a remote collection of data regarding driving.
Recently, a Gaussian mixture model (GMM)-based behavioral
modeling approach has been successfully developed for
smartwatch-based driver authentication. This study extends
the GMM-based behavioral modeling approach from driver
authentication to open-set driver identification. Because the
proposed approach can help for identifying illegal users, it is highly suitable for real-world conditions. According
to a review of the relevant literature, this study proposed the first smartwatch-based driver identification system.
This study proposed three open-set driver identification methods for different application domains. The result of this
research provides a reference for designing driver identification systems. To demonstrate the feasibility of the proposed
method, an experimental system that evaluates the performance of the driver identification method in simulated and real
environments was proposed. The experimental results for the three proposed methods of driver identification illustrated
an equal error rate (EER) of 11.19%, 10.65%, and 10.50% under a simulated environment and an EER of 17.95%, 17.07%,
and 16.66% under a real environment.

Index Terms— Biometric identification, driver identification, Gaussian mixture model, smartwatch.

I. INTRODUCTION

W ITH the development of telematics and Internet
of Things applications, many in-vehicle sensing

devices, such as Global Positioning System (GPS), On-Board
Diagnostics-II (OBD-II), Inertial Measurement Unit (IMU),
and smart mobile devices are widely used in car networking.
Because the Internet of Vehicles has numerous application
services, further studies must be conducted for driver iden-
tification since many application services require proof of the
driver’s identity (Fig. 1); For example, usage-based insurance
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Fig. 1. Application services structure that require the driver’s identity.

may remotely collect data regarding driving (driving time and
driving habits). A backend platform may convert that driving
data into a risk score to be used for adjusting the premium
level or for offering various rewards. Driver identification
can be further subdivided into two categories: closed-set
driver and open-set driver identification. Closed-set driver
identification is based on a set of known users; according
to the behavior characteristics of the target, the most similar
user from the set is selected. Open-set driver identification
is not limited to a known-user set and must reject unknown
users. Open-set driver identification is suitable for real-world
situations, in which illegal users impersonate registrants to
invade the personal application service.

Biometric identification can be applied to driver identifi-
cation. This identification can be categorized based on two
factors: physiological and behavioral characteristics. The phys-
iological characteristics are identified using features, such as
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fingerprint, palm shape, and iris and retina patterns, whereas
behavioral features include the signature, pace, and keyboard
tap rhythm. Both types of characteristics can be used for
identifying individuals. Because physiological characteristics
are distinct, they are suitable for developing highly reliable
identification methods, such as one-off person identification.
By contrast, behavioral characteristics may not be as accurate
and stable as physiological characteristics because human
behavior is inconsistent. However, behavioral traits have cer-
tain advantages over physiological traits for developing con-
tinuous and transparent recognition methods, such as personal
re-identification [1], [2]. Personal re-identification is essential
in driver identification, for example, under a theft scenario.
It is the theft that happens when the car’s owner is making
a short stop and leaves the car without turning the engine
off. In this case, without re-identification, the thief can easily
drive the stolen car. Regarding this scenario, re-identification
must be taken continuously because the theft can happen
anytime. Therefore, this study used behavioral characteristics.
Based on the types of behavioral characteristics of drivers,
the current literature have examined throttle and pedal pressure
signals [3]–[6], angle rotation of the steering wheel [6], [7],
a force of the steering wheel [8], the weight of the driver’s
seat and back of the chair [9], operating habits of the
driver’s hand [10]–[12], vehicle’ ’s CAN bus through the
On Board Diagnostics 2 (OBD-II) and CarbigsP (OBD-II
scanner [13]–[15], inertial and exteroceptive sensor [16], and
physiological feature [14] Most of the current research uses
or embeds many measurement and control sensors.

Smartwatches are crucial examples of the development
of light, small, versatile, mobile, wearable, and intelligent
devices. According to statistics calculated by Gartner, a mar-
ket research company, from 2017 to 2021, the number of
smartwatches worldwide will increase from 41.5 million to
81 million. Furthermore, smartwatches are used by several
car manufacturers as a car door lock remote controller, and in
some cases, to start car engines; this is because smartwatches
have multiple built-in sensors, which are suitable for these
applications. Sensors on smartwatches can monitor the phys-
iological status of the user and analyze the hand movement.
Lee et al., [10] have used smartwatches to capture the driver’s
hand movements to detect fatigue, whereas Yang et al. [11]
captured the exercise habits of the driver’s hand and obtained
driver certification.

Although numerous verification and identification appli-
cations, such as speaker identification [17], [18], signature
verification and recognition [19], handwriting recognition [20],
human identity verification [2], biometric person authentica-
tion [1], and fingerprint verification [21], driver identifica-
tion [12]–[16] have been developed, no reliable methods have
been proposed for applying the operating habits of the driver’s
hand for identification using a smartwatch. Therefore, this
research aimed to use the smartwatch to capture the behavioral
traits of the driver’s hand as a feature for identification.

Driver identification is performed in two stages, training and
testing. A training stage is used to develop the model, whereas
the testing stage is used to identify the user based on the
provided inputs. A Gaussian mixture model (GMM) and the

improvement is frequently applied to perform feature extrac-
tion, such as speaker and person identification [18], [22] and
driver identification [3]–[5], [15]. GMM have been broadly
selected because GMMs allow for mixed membership of
points to clusters and are very flexible. Other approaches
are used for driver identification, such as deep learning [13],
K-Nearest Neighbor (KNN), Random Forests, Multiplayer
Perceptron, Adaboost, Decision Tree [12], [14], improvement
of GMM [15], [23]. Li et al. [12] stated that KNN, Random
Forests, Multiplayer Perceptron, and Adaboost Algorithm have
good accuracies when the data is limited and will decrease
when the data is larger. Wang et al. [15] concluded that the
BGGMM-HMM would suffer a substantial computational cost
due to its structural complexity.

The GMM approach uses the likelihood value of the GMM
to determine if the input pattern is drawn from the data
distribution modeled by the GMM. The GMM can be adopted
to model for individual driver and this model is called an
individual driver model (IDM). The IDM can appropriately
identify individual drivers when the patterns of the drivers are
different; however, identification is difficult for drivers having
similar patterns. Yang et al. [11] proposed a GMM-based
behavioral modeling approach, which combines the IDM with
a universal driver model (UDM) modeling to overcome the
problem encountered by a conventional GMM. The IDM is
a model that captures the pattern of a single driver, and
the UDM is a GMM established based on the patterns of
many drivers. The IDM is specific and not general, whereas
the UDM is general and not specific. Yang et al. used the
IDM and UDM as base learners and combined them by
stacking generalization which is called the IUG-based method.
This IUG-based method is a baseline method in this study.
However, the results of the IUG-based method were validated
for driver authentication and not identification.

Driver identification requires multiclass classification
because the number of drivers to be identified is usually more
than two. Two common training approaches are available to
train SVMs for multiclass problems: one-against-all (OAA)
and one-against-one (OAO). In the OAA approach, a data
point is classified to a class if its SVM accepts the point,
and the SVMs of other classes reject it. This approach is
accurate for tightly clustered classes; however this approach
can leave regions of the feature space undecided, where
more than one class accepts or all classes reject the data
point [20]. The OAO approach involves N(N − 1)/2 binary
SVM classifiers. Each classifier is trained to separate each
pair of classes. The OAO is often faster than OAA approach
because the binary SVMs of the OAO approach are trained for
two classes and fewer SV support vectors. The two approaches
can provide different results on different cases, depending
on the application domain, and the approach of classifier
construction [19], [20], [23].

An open-set identification approach is required to iden-
tify an illegal user. Reynolds and Douglas [17] mentioned
in their research on speaker identification that the problem
of open-set identification can be solved using a closed set
identification technology combined with identity authentica-
tion technology. On the basis of the Reynolds solution, this
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research extends and improves the modeling approach of
Yang et al. [11] for driver identification. Three methods were
proposed for smartwatch-based open-set driver identification:
(1) IUG-based method, ’an individual and universal combining
driver models for the GMM open-set identification method
based on Yang’s approach,; (2) OAO-IUGA, a combination of
one-against-one training of the closed set identification model
with the authentication model obtained through IUG modeling;
and (3) OAA-IUGA, a one-against-all training of a closed set
identification model with the authentication model obtained
using IUG modeling.

To evaluate the methodology proposed in this study,
the behavioral data of drivers were collected from driving
simulation and real environments. The driving behavior data
of each participant can be divided into straight, left-turn,
and right-turn data, which will be used to construct a driver
behavior model for each type of behavior. The experiment
aimed to validate the superiority of the three proposed methods
compared with the conventional approaches (GMM) and to
provide guidelines of driver identification based on the three
methods. The performances of the methods were evaluated by
the respective equal error rate (EER) and space storage.

The experimental results showed that the proposed methods
can considerably improve the accuracy of the GMM method
on both simulated and real environments. The contributions of
this study are two-fold: 1) the first smartwatch-based open-set
driver identification, and 2) a reference guide of designing
driver identification systems.

The remainder of this paper is organized as follows:
Section II examines related studies. Section III describes the
basic concepts of the proposed approach. Sections IV and
V present the proposed methods and experimental results.
Finally, the conclusions and future prospects are provided in
Section VI.

II. DRIVER IDENTIFICATION

Researches on the analysis and identification the driver, can
be classified based on the types of behaviors, such as the driver
stepping on the throttle and brake pedal pressure signals, steer-
ing wheel angle and handgrip force, weight of the driver’s seat
and back of the chair, and the operating habits of the driver’s
hand. Yang et al. [11] proposed a new GMM-based method
that can improve the GMM for driver authentication based
on the motion sensor of the smartwatch. This method used a
stacking approach to integrate two driver behavior models,
namely the IDM and UDM, for driver authentication. The
experimental results indicated that this approach had EERs
of 4.62% and 7.86% for simulation and real environments.

In this study, the GMM-based behavioral modeling
approach [11] was extended to the open-set driver identifica-
tion problem, which is more difficult than the driver authen-
tication problem and has rarely been studied in the relevant
literature. Therefore, this study will be the first smartwatch-
based driver identification. The proposed methods are designed
to improve the performance of driver identification.

According to the previous research, no conclusive result
has been obtained on the superiority of any approach in all
domains. The performance of these approaches depends on

Fig. 2. GMM-based behavioral modeling approach.

applications and the construction of classifiers. For example,
OAA is better than OAO for fingerprint-based identifica-
tion [22]; however, OAO is superior to OAA for finger vein
authentication. Özgündüz and other scholars [19] concluded
that their OAA was superior to OAO for signature recognition,
and thus, OAA was used. In handwriting recognition [20],
no claim of an absolute superiority was made between the
two types of support vector machine model training; OAA
is considered superior for fewer numbers of classes, whereas
OAA and OAO have similar results for moderate numbers
of classes, and OAO is superior to OAA for large num-
bers of classes. As mentioned previously, no research has
implemented these strategies for driver identification; thus,
this study implemented the three proposed methods for driver
identification and evaluated them in this domain. The con-
clusion is necessary to provide a reference for the future
development of driver identification related to the field of
biometric authentication and identification

III. GMM-BASED BEHAVIORAL MODELING APPROACH

The GMM-based behavioral modeling approach [11]. for
driver identification is explained in the following three sections
(Fig. 2). The first and second sections discuss preprocessing
and feature extraction and the last section examines model
construction, which is the decision of the driver model. The
GMM-based behavioral combines two base models: the IDM
and UDM. The two GMM-based driver models were devel-
oped to extract ten features from the preprocessed data. Then,
the two types of features were separated to train two base
SVMs. The output of the two-base SVMs were stacked to
train another SVM for developing the driver behavior model.

A. Preprocessing
In this research, the data required for the models were

obtained from the smartwatch sensor, which covered 3-axis
accelerometer (Acc) and 2-axis orientation (Ori) sensor sig-
nals. In the data preprocessing section, the signal data was
collected, the noise was removed, and several features such as
delta-coefficient values of the sensor signals were calculated.
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The complete sequence of data was then partitioned into
segments to ensure that each segment was focused on a
particular behavior of the driver: straight, left and right turning.
The data were segmented in that manner because the behavior
in the three segments is different.

The four types of signals obtained from the accelerom-
eter and orientation sensors were used as features for
the GMM-based behavioral modeling approach. The four
types of features which derived into ten features are: (1)
three-dimensional Acc, (2) two-dimensional Ori, (3) Delta
Coefficients (DC) Acc and (4) Delta Coefficients Ori [11].

B. Feature Extraction
In feature extraction (Fig. 2), the IDM and UDM were

developed for feature representations of the preprocessed data.
Furthermore, two SVMs were trained and combined through
stacked generalization to produce a driver behavioral model.

GMMs are frequently used to represent data distribution.
The mixture density of a GMM can be provided as follows:

P (ω|θ) =
M∑

i=1

wi G(ω|μi

∑
i) (1)

where M denotes the number of Gaussian components; ω is

a D-dimensional random vector,
M∑

i=1
ω = 1 are the mixture

weights and G
(
ω | μi

∑
i
)

represents the Gaussian component
density function. μi and

∑
i are the mean and mixture

proportions, respectively. i = 1, M are the covariance matrices
of the M Gaussian components.

GMM can used to represent the distribution of sensor data
for a driver, which is referred as IDM for this driver, such
as [3]–[5]. However, there are two deficiencies of the GMM
approach, as explained in [11]. First, the log-likelihood value
of the model is the total sum of each log-likelihood value of the
GMMs based on each sensor. Since each of the four features
differed in its effectiveness to authenticate the genuine drivers,
the IDM log-likelihoods of four features were combined using
SVMs in a weighted manner on GMM-based behavioral mod-
eling. This approach will enhance the individual characteristics
of a driver. Secondly, for a simpler behavioral pattern of a
driver (driver B) that is a subset of the behavioral pattern of
another driver (driver A), the GMM approach may misclassify
driver A as driver B. To distinguish Gaussian components
of the driver behavior, the UDM was estimated to develop
a GMM for the collective behavior in a particular driving
scenario. A segment of the smartwatch sensor data of all driver
was mapped to vector ft in a new d-dimensional space by using
the formula:

ft = [
f1;1;t , f2;1;t , . . . , fM1;1;t , . . . , f1;4;t , fM4;4;t

]T (2)

where f j ;i,t is the posterior probability that ωi;t is gener-
ated by the jth Gaussian component of the ith UDM, and
d-dimensional refer to the total number of Gaussian compo-
nents of the four UMDs.

C. Driver Behavioral Modeling
In this study, two modalities (log-likelihood of IDM and

posterior probability of UDM) based on linear SVMs were
trained for different feature vectors based on [11]. Two GMM-
based driver models (IDM, UDM) are applied to combine
the specific features of IDM and a general feature of UDM
to achieve greater predictive accuracy. The IDM captures
each participant as the specific model. It appropriately detects
individuals when the patterns are different; however, detection
is difficult for similar or subset patterns. Meanwhile, UDM
captures the patterns of driving behavior based on all drivers
to represent the collective behaviors of all drivers that are more
general. It will complete the distinctive feature of the Gaussian
component using IDM on the feature extraction process.

Furthermore, SVMs on the log-likelihood of the Gaussian
components of IDM and SVMs on the posterior probabilities
of the Gaussian components of the UDM were built as
bases learner. These two bases SVMs for each driver were
combined through stacking (stacked generalization) to form
each driving behavior model. Fig. 2 shows the combiner used
as a meta-learner SVM to combine base-learner log-likelihood
(llh) and base learner posterior probability (pp). In this study,
the three driving behavior models were developed for a driver
in three specific driving scenarios: straight, turning left, and
right.

IV. OPEN-SET DRIVER IDENTIFICATION METHOD

On the basis of the Reynolds solution [17], this study
proposed an open-set identification method that combined the
closed set identity by using OAA/OAO and authentication
GMM-based behavioral modeling methods. In this section,
the three proposed methods of open-set driver identifica-
tion were described. The baseline was the GMM, whereas
the proposed methods were IUG-based, OAO-IUGA, and
OAA-IUGA methods. Each method included a training part
for modeling and a testing part for the identification.

A. IUG Modeling
IUG modeling is a driver behavioral modeling approach that

implements the GMM-based behavioral modeling approach
proposed by Yang et al. [11] (Fig. 2). IUG modeling process
uses different inputs, so different models were generated,
as shown in Fig. 3. The models built are IUGk , OAOij , OAAk
and IUGAk. The proposed methods of open-set driver iden-
tification incorporated IUG modeling differently. The IUGAk
model was an IUGk model in an authentication phase. It is
called the IUGAk model, where k is the registrant.

B. Open-Set Driver Identification
The resulting model is used to identify the driver in the

testing part. The baseline of this research is the GMM method
that combined the closed set GMM identity and authentication
because most of the current identification using GMM.

1) Individual-Universal Driver GMM Based Method
(IUG-Based Method): The IUG-based method combined a
closed-set identity by using the IUGk model and authentication
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Fig. 3. IUG models: (a) IUGk . (b) OAOij. (c) IUGAk (d) OAAk.

Fig. 4. IUG-Based Method.

with a threshold. During the training part, each registrant was
trained using a driver behavior model.

Each behavior model used the registrant and non-registrant
data by applying the GMM (Section III). In the testing part,
data preprocessing and feature extraction were first performed
for the input driving behavior signal, and the posterior proba-
bility of the registrant was then calculated with each driver’s
behavior model in the system. Finally, the posterior probability
of the maximum value was selected to determine if it is higher
than the threshold. If the value is higher than the threshold,
the driver identity of maximum posterior probability was
generated; otherwise, the driver was determined as unknown.
Assuming the system has n registrants, this identification
technique required the construction of n behavioral models.
Fig. 4 shows the IUG-Based method.

2) One-Againts-One IDM-UDM GMM Authentication (OAO-
IUGA): A one-against-one training method for the closed set
identification model (OAOij) combined with the authentication
model (IUGAk). The process starts with data preprocessing
and feature extraction for the input driving behavior signal.
OAOij model used in the Identity phase to fit the testing
data behavior with all registrant by calculating the posterior
probability of the testing data conditional by each OAOij
model that represents each registrant. In this phase, the driver
ID candidate was obtained from the maximum value of the

Fig. 5. OAO-IUGA Method.

posterior probability. Finally, in the authentication phase, the
posterior probability of driver ID candidate (Driver k) condi-
tional by the IUGAk model calculated and then determined
whether it is greater than the threshold or not. If the posterior
probability is greater than the threshold, the output is driver k;
otherwise, the driver is determined to be unknown. Assuming
that the system had n registrants, this identification technology
was used to construct (Cn

2 +n) behavioral models. Fig. 5 shows
the OAO-IUGA Method.

3) One-Againts-All IDM-UDM GMM Authentication (OAA-
IUGA): A one-against-all training method for the closed set
identification model (OAAk) combined with the authentication
model (IUGAk). OAA-IUGA method has the same algorithm
as OAO-IUGA method (Fig. 5), but use the different model
in the identity phase (OAAk) as shown in Fig. 3.

Assuming the system has n registrants, this identification
technique required the construction of 2n behavioral models.

V. EXPERIMENTS AND DISCUSSION

In this study, four experiments were conducted to evaluate
the proposed driver identification method. These experiments
aimed to 1) analyze the number of times required to perform
the repeated sampling strategy, 2) Confirm that in identification
field, IUG-Based give better result than GMM, as it does in
verification, 3) evaluate the accuracy of the four identification
methods in the simulated environment, and 4) evaluate the
accuracy of the four identification methods in real environ-
ments. All analyses were performed on a personal computer
with an Intel Core i7-7th Gen CPU, 32 gigabytes of RAM,
and Windows 10.
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Fig. 6. Simulated and real environment data collection.

As a preliminary experiment, the number of Gaussian com-
ponents in GMM was determined. The number of Gaussian
components required for the GMM was analyzed from 15 par-
ticipants in the simulated environments concerning 2, 4, 8, 16,
and 24 Gaussian components. A model’s accuracy tends to
increase with more GMM components at the cost of longer
training time. This experiment examines the tradeoff of the
accuracy gain and training time through different numbers of
component settings and chooses the component number when
the accuracy saturates. The accuracy of IDM improves 6.17%,
but the training time increases by 216% when the number
of GMM components of IDM increases from 4 to 8. The
results also show that the accuracy of UDM improves 14.15%,
and training time raises 54.63% when the number of GMM
components of UDM increases from 8 to 16. After evaluating
the tradeoff between EER and training time, the number of
GMM components was set to 4 for IDM and 16 for UDM.

A. Experimental Setups
1) Data Collection: The data simulated were collected from

90 participants. The driving behavior data of each participant
can be divided as straight, left-turn, and right-turn data, which
were then used to develop three types of driver behavior
models.

A driving simulation system close to a real driving system
was developed to analyze driving behaviors (Fig. 6). The sim-
ulation system included a desktop computer, liquid-crystal dis-
play monitor, simulator-grade wheel, and pedal unit. Driving
simulation software City Car Driving was used to simulate
realistic three-dimensional road scenes with dynamic traffic
streams. Sony smartwatch 3 and Sony Xperia Z5 premium
were the smartwatch and mobile phone adopted for collecting
data. The exercise habits of the ’driver’s hand were captured
through the built-in accelerometer and orientation sensor of
the smartwatch, while the mobile phone sent the data to the
server.

The driving behavior data of 20 participants driving a real
vehicle (Honda CR-V) in the campus of National Central
University were also collected.

Fig. 6 also shows the route and equipment of real environ-
ment. The route included five turns and was approximately
1.77 km long, clockwise and counterclockwise to ensure the

collection of their driving behaviors when turning in both
directions. The equipment is a smartphone which placed in
car besides the driver, and the gyroscope readings of the
smartphone were used to divide the driving session of each
driver into separate segments for different driving maneuvers.

2) Evaluation and Performance Indices: To assess the effec-
tiveness of each method, the repeated sampling strategy was
used to generate the training and evaluate the set data required
for the experiment. In this study, a car was assumed to be
owned/shared by at most 4–5 people, and thus, 15 drivers were
drawn from 90 people per sample, 4 of which were registrants
(car owners), 10 of which were registered as illegal users
for training, and the last of which was treated as illegal for
testing purposes. For each experiment, each registrant provided
55 training materials and 10 test materials. Each illegal user
provided 10 training and 40 test materials.

The following performance indicators were used to assess
open-set driver identification, including False Acceptance Rate
(FAR), False Rejection Rate (FRR), and MisLabeling Rate
(MLR), Registrant Error Rate (RER), Equal Error Rate (EER),
and Detection Error Trade-off (DET) curve. The FAR is the
probability that an illegal user was judged as a registrant. The
FRR is the probability that the correct registrant is judged
as an illegal user. The MLR is the probability that the correct
registrant is judged as another registrant. The FAR has a trade-
off relationship with the RER. With the increasing threshold,
the RER increased and the FAR decreased. By contrast, for the
reduced threshold, the RER decreased and the FAR increased.
The EER is the value at which the FAR and RER are equal.
DET curve shows all the corresponding FAR and RER when
moving the set threshold.

The models obtained for each driving maneuver were anno-
tated with S (driving straight), L (turning left), or R (turning
right). The S + L + R referred to the approach that utilized
the three segments, with each annotation representing one of
the three maneuvers.

B. Experiments
1) Sensitivity Analysis of the Round Number of the Repeated

Sampling Strategy: In this experiment, the number of execu-
tions required for the repeated sampling strategy by 90 par-
ticipants was analyzed in the simulation environment. If all
pairing combinations were executed, C90

15 = 4579 × 1017 =
O(10)17. This execution would have been excessive, so we
used the cumulative average method to find out that when a
certain number of execution rounds is run, the average value
will not change significantly. Fig. 7 shows that 1500 rounds of
GMM and IUG-Based modeling methods were performed, and
the cumulative average of their EER per round was calculated.
On the basis of the results, the EER average did not signifi-
cantly change when the number of execution rounds reached
900, and thus, in the subsequent experiment, the number
of executions of the repetitive sampling strategy (execution
run) was set to 900. Furthermore, the Gaussian component
numbers of the IDM and UDM used in all experiments in
this study were set with reference to the parameters in Riener
and Ferscha [9]; that is, the IDM and UDM were 4 and 16,
respectively.
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Fig. 7. Sensitivity Analysis of the Repeated Sampling Strategy.

Fig. 8. Performance Comparison of the Proposed Driver Identification
Methods and GMM in the Simulated Environment.

TABLE I
EER COMPARISON OF PROPOSED METHODS AND GMM RESULT

2) Performance Comparison of the Proposed Driver Identifi-
cation Methods and GMM in the Simulated Environment: Fig. 8
shows the DET Curve for the GMM and IUG-Based in a
simulated environment. Fig. 8(a) shows that the IUG-Based
method is more accurate than the GMM in a single driving
situation. Furthermore, Fig. 8 (b) shows that the IUG-Based
method is more effective than the GMM in a multi-driving
scenario and is more accurate than the GMM.

Table I validates that the IUG-Based method is at least
5% superior to the GMM in terms of the EER. Furthermore,
the experimental results show that using the three driving
scenarios S + L + R at the same time had the optimal
recognition result; therefore, the subsequent two experiments
only used S + L + R for performance evaluation.

3) Performance Evaluation of Four Driver Identification Meth-
ods in the Simulated Environment: In this experiment, four
driver identification methods in a simulated environment were
compared. Fig. 9 shows the DET curve for four driver identi-
fication methods. The effects of the IUG-Based, OAA-IUGA
and OAO-IUGA methods were significantly superior to the
GMM. EER values of each method in a simulated environment
is as follows. GMM 23.14%, IUG-Based 11.19%, OAA-IUGA
10.65% and OAO-IUGA 10.50%. Insert of Fig. 9 shows the
MLR and FRR results of the four methods. The IUG-Based,

Fig. 9. Performance evaluation of the driver identification methods in
the simulated environment (insert: MLR and FRR results).

Fig. 10. Performance evaluation of the driver identification methods in
the real environment (insert: MLR and FRR results).

OAA IUGA, and OAO IUGA methods exhibited no difference
between the FRRs; however, the IUG-Based method was
slightly inferior to OAA IUGA and OAO IUGA.

4) Performance Evaluation of Four Driver Identification Meth-
ods in the Real Environment: In this study, 20 participants drove
in a real environment. Fig. 10 show that the three proposed
methods as the superior of the GMM method. Among them,
the EER values for the GMM, IUG-Based, OAA-IUGA, and
OAO-IUGA were 33.83%, 17.95%, 17.07%, and 16.66%,
respectively.

C. Discussion
Some conclusions can be obtained based on the experimen-

tal results. Experiment 1 validated that in 1500 rounds when
the number of execution rounds reached 900, the EER average
did not significantly change. Therefore, 900 execution runs can
be performed for Experiments 2, 3, and 4, and thus, sampling
is the representative of the data and provides an almost con-
stant result. Experiment 2 shows that the IUG-Based method
is superior to the GMM in terms of driver identification, and
thus, this finding can be extended to the OAA and OAO
methods. Moreover, Experiment 2 shows that S + L + R
classification must be used for performance evaluation because
it provides the optimal identification results for the GMM and
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TABLE II
COMPARISON OF THE EER AND SPACE STORAGE OF THE

3 THREE PROPOSED METHODS

TABLE III
THE RANK OF ACCURACY AND PROVIDENT SPACE

OF THE THREE PROPOSED METHODS

IUG-Based methods. The difference in the EER of S + L + R
classification and other classification was 3.45%–23.79% for
the IUG-Based based and 4.29%–18.36% for the GMM.

Performance evaluation stated that the three proposed meth-
ods: IUG, OAA-IUGA, and OAO-IUGA provided superior
results to that of the GMM. A significant difference was
observed in the GMM and the three proposed methods.
Experiments 3 and 4 showed that among the three pro-
posed identification methods, IUG method was slightly worse
than OAA-IUGA and OAO-IUGA methods; however, the
OAA-IUGA and OAO-IUGA methods were not significantly
different. The OAO-IUGA exhibited the highest accuracy,
followed by the OAA-IUGA, IUG, and GMM methods.

Although among the three proposed recognition methods
IUG-Based method exhibited the lowest accuracy, it required
the least number of classifiers only n. OAA-IUGA and OAO-
IUG-Based methods required 2n and (Cn

2 + n ), respectively.
The OAA-IUGA method required 2n classifiers because it
applied 2 sets of models: the OAAk model for the identity
phase, and the IUGA model for the authentication phase. Like-
wise, OAO-IUGA methods required Cn

2 models for the identity
phase and n models for the authentication phase. The result
indicated that the GMM and IUG-Based methods required less
space, followed by the OAA-IUGA and OAO-IUGA methods.

Tables II and III show that for a system with high recog-
nition performance, then the OAO-IUGA method must be
selected. If average recognition performance and high storage
space are required, the IUG-Based method must be used. For a
few drivers, no significant differences are observed in terms of
storage space. However, only a slight difference in accuracy is
observed between the OAA-IUGA and OAO-IUGA methods.
The OAA-IUGA method has medium accuracy and high
storage space. Thus, it can be an optimal option.

D. Security Analysis
The security of Biometric Authentication Systems is an

important issue that needs to be discussed. Newton, Elaine
on National Institute of Standards and Technology (NIST)
of the United States Government published an evaluation

framework of biometric authentication, stated that the possible
attacks are zero information attacks and targeted attacks [24].
The targeted attack is impersonation attacks. Zero information
attacks is a typical attack because the attacker does not have
to mimic even know the biometric pattern. Experiments 3 and
4 were conducted under the zero-information attacks scenario
as explain on V.A.2 “Evaluation and Performance Indices.”
The experiment result shows that the EER average is 10.78 for
the simulation environment and 17.22 for the real environ-
ment. The EER captures the legal drivers identified as illegal
drivers (FRR) and illegal drivers identified as legal drivers
(FAR). The DET curve (Fig. 9, 10) shows the tradeoff rela-
tionship between the FAR and RER. If the threshold increased,
RER would increase, and FAR will decrease. Conversely, if the
threshold is lowered, the RER will decrease, and the FAR will
increase. Fig. 9 and 10 indicate that FAR is low, which means
the methods able to secure the car from the illegal user.

Information theoretical analysis of impersonation
attack [25] has been studied to demonstrate that the
information taken by the proposed classifier has enough
entropy against possible impersonation attacks. However,
the metrics cannot directly be applied to the system because
the method used regression (standard least-squares method)
for trajectory based on the positions of one or more end-
effectors, while the data set in this study consists of ten
accelerometer and orientation features. Therefore, the metrics
cannot easily evaluate our data set. Building metrics to
evaluate that the proposed driver identification method
is secure against the impersonation attack can further be
researched on future work.

VI. CONCLUSION AND FUTURE WORK

In this study, three smartwatch-based open-set driver identi-
fication methods (IUG-Based, OAA-IUGA, and OAO-IUGA)
were proposed as the first smartwatch driver identification
methods. Moreover, it’s were validated and compared with
the GMM methods. The experimental results showed that the
three proposed methods were more accurate than the GMM
method. In the simulation environment, the EER values were
11.19% for IUG-Based, 10.65% for OAA-IUGA, and 10.50%
for OAO-IUGA, whereas the EER of the baseline GMM
method was 23.14%. In a real environment, the EER values
for IUG-Based, OAA-IUGA, and OAO-IUGA were 17.95%,
17.07%, and 16.66%, respectively, whereas for the baseline,
it was 33.83%.

This study can provide a reference for developers of driver
identification systems with different requirements. If a sys-
tem with high identification performance, the OAO-IUGA
method is recommended whereas if it requires a low identi-
fication accuracy and can provide considerable storage space,
the IUG-Based method is recommended otherwise if it mod-
erately high identification performance and relatively econom-
ical storage use, the OAA-IUGA method should be used.
According to the security analysis, the proposed method is
secure from the zero-information attack. Further research
concerned with the security of the proposed identification
method against various attacks, including impersonation, will
be conducted on the future work.
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